点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:凤凰快三|凤凰快三
首页>文化频道>要闻>正文

凤凰快三|凤凰快三

来源:凤凰快三2024-04-02 17:48

  

今日腊八!万事“粥”全等年来******

今天是农历十二月初八

是我国的传统节日——腊八节

腊八节后年味儿渐浓

在我国北方

有 “小孩小孩你别馋

过了腊八就是年”的童谣

过腊八就意味着拉开了过年的序幕

今日腊八!万事“粥”全等年来

  腊八节的由来

  腊者,猎也,言田猎取禽兽以祭祀其先祖也。

——《礼记 • 月令》

  冬至后三戌,腊祭百神。

——《说文》

  北京师范大学社会学院教授、中国民间文艺家协会中国节日文化研究中心主任萧放介绍,腊八节的前身是古代的腊日,腊日是上古重要的年终祭祀日。

  在我国古代,“腊”最初是一种祭礼。据《礼记·郊特牲》记载,腊祭是“岁十二月,合聚万物而索飨之也。”夏代称腊日为“嘉平”,商代为“清祀”,周代为“大蜡”;因在十二月举行,故称该月为腊月,举行“冬祭”的这一天便称为“腊日”。

  腊日起初并没有固定时期,直到魏晋南北朝时,才固定在腊月初八这一天。自此,这一日便被人们称作“腊八”。

  腊八节吃什么

  喝腊八粥。在腊八节这一天,很多地方有喝腊八粥的传统。腊八粥又称“七宝五味粥”“佛粥”“大家饭”等,由大米、小米、玉米、薏米、红枣、莲子、花生、桂圆和各种豆类(如红豆、绿豆、黄豆、黑豆、芸豆等)等食材熬制而成。

今日腊八!万事“粥”全等年来

  据说,我国喝腊八粥的习俗,已经流传有一千多年。

  据记载,腊八粥最早开始于宋代,每逢“腊八”这一天,不论是朝廷、官府、寺院,还是黎民百姓家,都要做腊八粥。

  到了清朝,喝腊八粥的风俗更是盛行。“腊八”这一天,皇家食用并施散腊八粥,大街小巷人涌如潮,即便是数九寒冬日,也是热闹非凡。

  如今,每到腊八节,常有寺院施粥,如杭州灵隐寺每年都给养老院馈送腊八粥,让传统节日充满了爱的温情。

  泡腊八蒜。腊八蒜通常是指用醋腌制的蒜,成品颜色翠绿,口味偏酸、微辣。因多在农历十二月初八(腊月初八)进行腌制,故称“腊八蒜”。

  在我国北方,泡腊八蒜也是“腊八节”的习俗之一。去除老皮后,将紫皮蒜浸入米醋,封严坛口到除夕再启封,蒜就会变得如同翡翠碧玉般通透。湛清翠绿、蒜辣醋香的腊八蒜,可以做凉菜可以配饺子,北方人的春节少不了它。

今日腊八!万事“粥”全等年来

图源:摄图网

  吃腊八豆腐。在腊八前后,安徽黔县家家户户都要晒制豆腐。豆腐抹上盐水后在中间挖一小洞,在太阳下晒干,民间将这种自然晒制的豆腐称作“腊八豆腐”。

  “腊八豆腐”平时用草绳悬挂在通风处晾着,吃时摘取,一般可晾放三个月不变质、变味。它既可以单独吃,也可与肉类同炒、同炖。古时的徽商外出一走一年,这豆腐就是游子与家乡的信物。

今日腊八!万事“粥”全等年来

图源:人民日报

  腊八时节,注意防寒保暖

  由于腊八一般正值“三九天”,所以民间有“腊七腊八,冻掉下巴”的说法,形容这个时间天气极冷,所以外出需注意适当添加衣物,防寒保暖。

  中医认为,“头是诸阳之会”,体内阳气很容易从头部散失。所以,天气严寒之时,要注意头部保暖,以免引发感冒、头痛等疾病。

  俗语说,“寒从脚下起”,冬季要注意保持鞋袜温暖干燥,并经常洗晒。睡前可用热水泡脚,并按摩脚底穴位,促进血液循环。此外,还要尽可能减少皮肤暴露,手、耳朵等容易生冻疮的部位,要注意经常按摩,出门戴上手套等。 

今日腊八!万事“粥”全等年来

  熬制养生腊八粥“指南”

  清代食疗名著《随息居饮食谱》曾将粥誉为“世间第一补人之物”。传统腊八粥延续至今,不但契合中医食疗中的“五色入五脏”的养生说法,还符合现代营养学中食物多样化标准。

  熬好一锅滋补养人的腊八粥,营养专家提出了4点建议。

  杂粮和白米比例1:3。这样能够保持较为平稳的餐后血糖,且豆类和部分全谷物没有黏性,合理搭配口感更好。

  加水量是粮食的6倍以上。用电压力锅做粥,粮食与水的比例大概是1:10~1:6。用普通汤锅做粥,则需要添加更多水。

  先泡后煮,防止变糊。杂豆种类的不同,浸泡所需时长也不同。一般来讲,豆子浸泡8~12小时,多数全谷物2~4小时为宜。认真清洗过的杂粮,浸泡的水最好不要丢掉,否则损失了不少维生素和钾等营养成分。

  别煮得太黏稠。腊八粥中的糯米和大黄米之所以能产生黏稠的口感,是因为其中一种不容易消化的淀粉比例较高。脾胃虚弱的老人、孩子,或是胃动力不足的年轻人,喝腊八粥不宜太黏稠。

  综合整理自:科普中国、中国食品科学技术学会、人民日报、生命时报

  整理:刘雪洁 蔡琳

凤凰快三

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 这些常买的韩国品牌清单拿走不谢

  • 中年叛逆的陈志朋可真洒脱

独家策划

推荐阅读
凤凰快三 央行将发行2019年版第五套人民币
2023-12-30
凤凰快三正视频直播KPL春季赛:GK(0-0)WE
2023-08-04
凤凰快三大众新迈腾曝光小失望
2024-05-03
凤凰快三广西人,食物链顶端的王者
2024-01-18
凤凰快三学生伤亡事件频发,登封武校为何还能这么火
2023-11-16
凤凰快三遭迪士尼”打脸”拒绝收购 知名韩厂NEXON股价跌8.3%
2023-11-22
凤凰快三动作冒险游戏《控制》高清截图
2023-10-23
凤凰快三仲为国:从马云回应996看企业发展挑战
2024-01-14
凤凰快三世界首富出轨剧“新剧情”:谍战、爱情和金钱
2023-10-24
凤凰快三教育部直属高校财政拨款
2024-05-29
凤凰快三"乐清失联男孩"母亲报假警一审被判1年3个月
2023-10-15
凤凰快三 姜子牙与姜尚是不是同一个人?
2023-11-26
凤凰快三数据安全产业规模迅速扩大 2025年将超1500亿元
2023-09-12
凤凰快三纪连海带您见证中国酒文化的变迁史
2024-04-30
凤凰快三绝地求生冠军联赛春季赛
2024-03-23
凤凰快三中国展现发展活力与奋进姿态 提振全球增长信心
2023-11-30
凤凰快三汉藏语系在新石器时代晚期起源中国北方
2023-11-22
凤凰快三国六怪象:想买买不到不想买狂降
2023-07-13
凤凰快三北京四合院,真没你想的那么贵!
2023-12-13
凤凰快三潘辰获新浪杯海外站亚军
2023-08-05
凤凰快三晒合照害林志玲被批蛇精脸 丫头解释:滤镜开太强
2023-07-07
凤凰快三 沈腾出席公安部发布会:作品是我们的孩子,盗版像人贩子
2023-08-03
凤凰快三国产科幻片缘何成为春节档爆款
2023-09-04
凤凰快三亚马逊AI考核:你是不是世界首富的兄弟
2023-11-06
加载更多
凤凰快三地图